1,719 research outputs found

    The Influence of the Rashba spin orbit coupling on the two dimensional magnetoexcitons

    Get PDF
    Cataloged from PDF version of article.The influence of the Rashba spin-orbit coupling (RSOC) on the two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field leads to different results for the Landau quantization in different spin projections. In the Landau gauge the unidimensional wave vector describing the free motion in one in-plane direction is the same for both spin projections, whereas the numbers of Landau quantization levels are different. For an electron in an s-type conduction band they differ by one, as was established earlier by Rashba (1960 Fiz. Tverd. Tela 2 1224), whereas for heavy holes in a p-type valence band influenced by the 2D symmetry of the layer they differ by three. The shifts and the rearrangements of the 2D hole Landau quantization levels on the energy scale are much larger in comparison with the case of conduction electron Landau levels. This is due to the strong influence of the magnetic field on the RSOC parameter. At sufficiently large values of this parameter the shifts and rearrangements are comparable with the hole cyclotron energy. There are two lowest spin-split Landau levels for electrons as well as four lowest ones for holes in the case of small RSOC parameters. They give rise to eight lowest energy bands of the 2D magnetoexcitons, as well as of the band-to-band quantum transitions. It is shown that three of them are dipole-active, three are quadrupole-active and two are forbidden. The optical orientation under the influence of circularly polarized light leads to optical alignment of the magnetoexcitons with different orbital momentum projections in the direction of the external magnetic field

    Charged Hydrogenic, Helium and Helium-Hydrogenic Molecular Chains in a Strong Magnetic Field

    Full text link
    A non-relativistic classification of charged molecular hydrogenic, helium and mixed helium-hydrogenic chains with one or two electrons which can exist in a strong magnetic field B≲1016B \lesssim 10^{16} G is given. It is shown that for both 1e−2e1e-2e cases at the strongest studied magnetic fields the longest hydrogenic chain contains at most five protons indicating to the existence of the H54+\rm{H}_5^{4+} and H53+\rm{H}_5^{3+} ions, respectively. In the case of the helium chains the longest chains can exist at the strongest studied magnetic fields with three and four \al-particles for 1e−2e1e-2e cases, respectively. For mixed helium-hydrogenic chains the number of heavy centers can reach five for highest magnetic fields studied. In general, for a fixed magnetic field two-electron chains are more bound than one-electron ones.Comment: 32 pages, 2 figures, 9 table
    • …
    corecore